ARCHIVE FOR THE ‘rugged-mobile-device’ CATEGORY
Jul 16, 2019 • Features • Management • health and safety • tablets • Rugged Mobile Device
Digital devices have over the years become more portable. For service technicians this improvement in usability has undoubtedly improved the way in which they work. However, the industry’s swift adoption of these devices has perhaps been too rapid, meaning health and safety guidance is yet to catch-up with the potential ergonomic risks that smartphone and tablet use carries.
I’ve written articles in these pages (and in our recent edition of The Handy Little Book) on health and safety, referencing the potential impact on a lone worker’s wellbeing, given that their work is carried out mostly in isolation. However, another area of the broad H&S spectrum that lone workers or field service engineers are vulnerable too is musculo-skeletal dis-orders (MSDs).
Defined by the UK Health and Safety Executive (HSE) as “any injury, damage or dis-order of the joints or other tissues in the upper/lower limbs or the back", MSDs, according to a study carried out by HSE for the period 2017/2018, shows 469,000 workers are suffering with cases of work-related MSDs, which includes long and short-term conditions. The knock-on result on productivity is 6.6 million working days lost as a result of the condition, the same research reveals.
The study does not uncover the extent to which lone or mobile workers suffer, although the top three industries where workers are most affected include fishing, forestry, agriculture (grouped together), construction and then transportation and storage (also grouped) will arguably include a section of field-based lone workers. The condition is also common for office-based workers who are vulnerable to neck or back issues, brought on by incorrect posture while using computer equipment at a desk.
It shouldn’t be ignored however, that while field service engineers are desk-free, incorrect ergonomic use of tablets and phones – the tool of the trade for most lone workers – carries its own ergonomic risk.
But with rugged tablet and laptop devices now a ubiquitous part of an engineer’s kit why hasn’t there been more attention on their dangers? It’s useful to look more generally at society’s relationship with smartphones and tablets, which are now commonplace in people’s lives.
It is estimated that five billion people in the world own a mobile device, of which, half of these are smartphones. Indeed, the rate at which we’ve adopted them is staggering which is primarily down to their relative ease of use and in-turn part of the reason why they have found their way into engineers and technicians hands who require rugged devices that perform but also offer a practicality. However, it’s this natural uptake both in public and the workplace that, according to one expert, is enabling risks around their ergonomic use to go unnoticed.
Ed Milnes is Founder and Director of Guildford Ergonomics a consultancy firm in the UK that specialises in ergonomics and human factors in the workplace and has contributed guidance and research into the risks of smartphone and tablet use.
“I think there’s a psychological element to it,” he tells me over Skype. “It’s as if it hasn’t come onto people’s radars because we use these devices so much in our everyday lives anyway. We accept them as something that – because they’re always around – they must be safe that there can’t be any inherent risks with them. When you use them day in and day out, almost every day, it does become more of an issue.”
"It is estimated that five billion people in the world own a mobile device..."
MSD risks are linked to exposure and how long how and how often is spent on activities. In the case of service engineers this does oscilate in line with the complexity and length of a job but as technology advances – with AR soon to play a major role – then engineers will be looking at their tablets and then moving their vision and neck towards the asset and then back to the tablet.
It will, inevitably, place stress on the back and shoulder and other areas.
However, it’s the neck region, Ed tells me, that is most vulnerable to pain when using these types of devices. “The one area that does stand out, where we’re clear that there is an issue is in the neck area and the development of neck pain,” he says. “This is the absolute number one area when it comes to these devices.”
He acknowledges though, given the nature of lone workers, it is difficult to collaborate and collect insightful data. “A lot of the data on discomfort is basically self-reported data, so it’s very subjective. For example, how long people are using the devices for and how often they’re using them. It’s based on people estimating how long they’ve spent on them and very often you get people underestimating.”
Research ambiguity can in part be attributed to the lack of guidance that exists on the topic. HSE who inform legislation around health and safety in the UK, seem to have been caught napping when it comes to specific guidance on smartphone and tablet use. Their L26 guidance document, which advises on Display Screen Equipment was published in 1992 and updated in 1998 but fails to incorporate the mobility trend. “It [the L26] did its best to anticipate the development of things,” Ed sympathises, “but there is no official formal kind of guidance. It’s a real difficulty because you not only have that lack of regulatory clout behind doing anything. But it’s also about the physical aspect. People by the very nature of the work they are doing, are out and about, so they’re not under anyone’s eye.”
Back then to those office workers who receive regular risk-assessments around their display screen equipment (computer, chair etc.). For their mobile colleagues it’s perhaps unreasonable to expect a health and safety manager to attend each engineer’s call-out to ensure they are using a tablet correctly.
Ed does suggest however that companies and management need to incorporate more of a broad-based assessment and take more of an active role in the process, particularly around training, acknowledging the type of work they conduct. “It’s also about the physical aspect,” he explains. “People by the very nature of the work they are doing, are out and about, so they’re not under anyone’s eye. There has to be an understanding on the part of the company, including the health and safety manager who can potentially envisage the workers are going to face and put controls in place; putting devices in place that they can refer to to help them use their own mobile devices more safely.”
“The big thing really is training,” he continues, “which I know is right down the bottom of the hierarchy of control, but ultimately, it’s what you’re left with when everything else doesn’t really stack up as a solution.”
As devices continue to evolve more emphasis will need to be placed on their correct handling. A solution is undoubtedly required which should be driven by concrete guidance.
For now though, employers need to recognise the ergonomic risks associated with the hardware as continued incorrect use could spell greater difficulties for workers’ health later on.
Jun 05, 2019 • Features • Hardware • rugged hardware • Rugged Mobile Device
In the vast field service spectrum stacked full of diverse vertical industries, rugged hardware is a constant support holding up the many sectors with tough rubber membranes and indestructible screens. Within service, large and small field service firms all use hardware that is rugged, durable and able to withstand the wind and the rain and the drops and the knocks.
If we were to define what field service is – and it has many definitions – then we could agree that it is something that does not (necessarily) take place in a nice, warm and safe office where smooth I-pads and sleek smartphones flourish. Let’s also reflect on the impact field service has.
I don’t think it’s too controversial to say that business relies on quality service. It keeps processes flowing and simply put that keeps revenue flowing in too. Today, delivering efficient field service is paramount and it’s an efficiency driven and empowered by technology – tough and robust technology.
In a servitization era, where the asset is no longer top dog, business models are created round long-term client-centred contracts attached to an evolving product. An effective service offering creates the framework for that product. Key here are the tools that enable engineers to carry out their work, tools that won’t let them down. Enter then, rugged devices: smartphones, tablets and laptops. Robust, tough and sturdy hardware that empowers an employee. But in the sea of rugged options that exists, how do we pick the right device for our needs and ultimately establish it’s fit-for purpose?
The sector is blessed with a range of cloud-based software solutions. Job scheduling, customer details and equipment data can all be accessed on a tablet or phone, but can your chosen rugged handset handle these software requirements and other industry specific applications? Can the processor and memory cope with running several required applications at once? Ease of use is also another factor to take into consideration.
We might be used to the Android or IoS platform from our own personal devices - and the majority of devices sit these (albeit a few versions behind) on top of their own operating systems – but the technicalities will differ slightly in terms of field-service use and it’s important to feel settled in this slightly different platform. Furthermore, like any cloud-based software, FSM applications can also be vulnerable to cyber-attacks and data-breaches. Seeking out protection is advised, and don’t forget to consider battery life.
Service engineers can also go days without charging their device. Fortunately, many rugged devices – unlike consumer devices – have removable batteries so spares can be carried around ensuring power is always on-hand. Engineers are often exposed to the elements so devices need to work in all weathers and their extremes. Rain is a given in most countries and getting an intricate piece of technology wet can lead to malfunctions very quickly. However, an engineer wants to focus on the job in hand rather than being concerned with keeping an ipad dry. Conversely, screen glare can also be a frustrating issue for engineers working out in the sun. And what about dropping the device?
Let’s be honest, engineers carry out repairs and maintenance in the most uncomfortable, inhospitable and awkward of environments. It’s inevitable that a drop of the hardware will take place at some point. Thankfully rugged manufacturers are savvy to these demands. Screens now come with tough, water-proof protection, putting engineers’ mind at ease that their tablet won’t show terminal error codes as the heavens open or the sun beats down. Tough, rubber membranes offer protection from drops at height, with rugged manufacturers systematically testing products for drop robustness.
"Engineers are often exposed to the elements so devices need to work in all weathers and their extremes..."
Forgive this article’s trend for comparison and scene-setting but when mentioning rugged, then the word consumer usually follows and our personal relationship with consumer mobile devices has never been closer. The tech in our smart-phone that never leaves our side and keeps us connected with the world as we set out for the day. The personal tablet that resides on the living room sofa picked-up by the whole family to play games, look up recipes, or book a flight is now ubiquitous as the TV remote. Smart devices now play a pivotal role in our daily lives.
However, when it comes to investing in rugged devices, our requirements will differ from that when we visit high-street phone shops. Primarily, decisions are made with a business case in mind. Portable, strong, weather-proof and intuitive units are the key tangible factors worth considering but what about its ROI? Drilling down, it’s useful to compare the rugged and consumer markets.
Where the lines between the two were once obvious, both markets are now beginning to converge. A major differentiator has always been the aesthetics. The phone in your pocket and your home-tablet show off their sleek lined and curved edges, casting disparaging looks at rugged’s Frankenstein laptops and rubber encased tablets. However, products from Getac, Xplore and Panasonic are now producing tablets, laptops and phones that are more pleasing on the eye, furthermore consumer phones such as Samsung’s Note9 and the iPhoneX incorporate rugged IP65 specifications such as being dustproof and waterproof.
The lines become further blurred as rugged commonly integrates the Android framework as an operating platform. As consumers, we tend to refresh our handsets every 12 to 18 months. Rugged tech, however can last for 36. It’s a time frame (and a market) that consumer manufacturers such as Samsung and Apple keep looking over to, poised perhaps to make a move. Given the high-cost of rugged devices, there is the very real possibility that service companies will opt for service-adapted consumer devices.
While the argument for consumer over rugged in field service is becoming a very valid one, the latter has a distinct financial advantage when comparing the savings gained through Total Cost of Ownerships (TCO). TCO is an estimate of all the direct and indirect costs involved in acquiring and operating a product or system over its lifetime and it’s a formula that rugged manufacturers have often waved in front of their consumer counterparts.
Generally, a rugged unit will last longer than a consumer-based device and in-looping back to the opening thoughts of this article, any downtime in service is a huge cost, damaging firms reputationally and of course financially. At the moment, consumer software will always be more vulnerable to faults in its average twoyear life-cycle. Rugged tech will always last longer which is fundamental to a sector that relies heavily on reliability, which is why enterprise IT deliberately has slower product cycles.
Like all adoptions of new technology, choosing the right solution for your team’s requirements is paramount. Rugged solution providers should be able to understand what you need and why you need it, tailoring a product to suit. And here lies the key – your engineer, Empowering him or her to carry out their tasks to the best of their ability is vital. Come rain or indeed sunshine.
May 24, 2019 • News • Hardware • Rugged Mobile Device
Conker has agreed to the partnership to enable 42Gears to support the management of fleets of Conker devices for UK enterprises, and to refer and resell 42Gears’ unified endpoint management (UEM) software. A key driving force behind the development of this partnership is Conker’s customer base, as it discovered that they not only seek business rugged, fit-for-purpose devices, but that they also require an even greater degree of control, management and security across their devices.
James Summers, CEO and founder, Conker, says, “As a fast-growth British technology business, we’re constantly evaluating ways in which we can deliver even greater levels of business value to the market, coupled with the best possible fit-for-purpose mobile devices. This partnership with 42Gears is an important milestone in realising this goal.”
He continued, “After discussions with 42Gears, it became clear that it shared the same vision and ethos as Conker about enterprise mobility. We’re pleased to agree to this partnership, as it means that our business rugged devices are not only fit-for-purpose and adaptable to different business scenarios, but that organisations can be assured that they have total control and security of their devices.”
Kaushik Sindhu, Associate Vice President, 42Gears says, “Business-owned devices in the field are insecure and prone to misuse. Also, managing large fleets of devices have been challenging for IT admins. This partnership will serve to address these issues through easy device management, and with enterprises gaining a greater degree of control over their devices. It’s a mutually-beneficial association and we’re glad to have become a part of the Conker partner ecosystem now.”
Conker plans to expand its channel partnerships during 2019, as it seeks to further enhance its enterprise mobility offering for UK and global organisations. This complements Conker’s drive to provide its range of Android and Windows-based business rugged tablet, touch screen and mobile devices, along with its consultancy and support services.
After evaluating several providers, Conker concluded that 42Gears offered the most compelling best-of-breed technology, that enables the combination of its secure software with Conker’s secure hardware, to ensure even more productive business processes.
Nov 06, 2018 • Features • Hardware • Enterprise Mobility • field service • fit-for-purpose • IP ratings • Rugged laptops • rugged tablets • Service Management • Capacative vs Resistive • Field Technologies • MIL-STD810G • Rugged Mobile Device
Rugged devices are a hugely important tools available to field service organisations to empower their engineers with mobile tools that are designed to survive the rigours of remote working environments. However, for the uninitiated, there can be a...
Rugged devices are a hugely important tools available to field service organisations to empower their engineers with mobile tools that are designed to survive the rigours of remote working environments. However, for the uninitiated, there can be a bewildering amount of terms used by rugged manufacturers (and increasingly their consumer-focused cousin) so let’s take a quick refresher of some of the key language used in the world of rugged...
Fit-for-purpose
With no shortage of devices to choose from, deciding what’s best for your service operation is no easy task. Fit-for-purpose should be the starting point for any deployment, say the experts.
Indeed, the first question any company should ask when looking for new devices for their engineers or technicians is “what tasks will the device be used for?”
Mobile devices in field service are mission-critical – they are not just “nice-to-have”, they are the lynchpin of your operations essential to the efficient running of the operation. Ease-of-use of can have a big effect on productivity and user-acceptance – would an integrated barcode scanner, for example, be better than a more fiddly-to-use camera?
"The mobile device is more than your service technician’s new pen and paper; it carries the job schedule, customer details and equipment data..."
Remember, once you’ve made the shift away from paper, there’s no going back – the mobile device is more than your service technician’s new pen and paper; it carries the job schedule, customer details and equipment data.
Your customers will become used to the higher service levels.
So, above all, the devices you equip your field workers with need to be reliable.
Can it survive the technician dropping it? Are the processor and memory up to running several apps at once if that’s required? Is the screen readable in strong light? Will the touchscreen work if it gets wet? Can it last a whole shift without recharging the battery?
Is it Fit-for-purpose?
MIL-STD810G
Almost every rugged device you see will proudly boast the magical code MIL-STD 810G somewhere in the specs but what exactly does it mean and why is it just so important?
Well as you may well have guessed MIL-STD is actually short for Military Standard. In fact, it is an American military standard that although has it’s origins with the US Air Force is now upheld in a tri-service agreement between the US Army, US Navy and US Air force. However, the standard is widely adopted amongst commercial products that need to be able to hold up to rigorous environmental tests.
The G if you were wondering, relates to the current revision of the certification document and we have been at G since 2008.
General Program Guidelines
The first part of the MIL-STD-810G is a set of general guidelines that describes management, engineering, and technical roles in the environmental design and test the tailoring process. It focuses on the process of tailoring design and test criteria to the specific environmental conditions an equipment item is likely to encounter during its service life.
Laboratory test methods
The second element of MIL-STD-810G is focussed on the environmental laboratory test methods to be applied using the test tailoring guidelines described outlined in the general program guidelines.
With the exception of Test Method 528 (Mechanical Vibrations of Shipboard Equipment), these methods are not mandatory, but rather the appropriate method is selected and tailored to generate the most relevant test data possible.
The tests themselves are varied across a range of different environmental stresses which include:
- Temperature ranges
- Shock
- Vibration
- Humidity
Tested to. Vs. Engineered to
One problem with MIL-STD 810G testing is that it can be very expensive and it’s important to remember that MIL-STD-810 is not a specification per se but a standard. A specification provides for absolute criteria which must be satisfied to “meet the spec”. MIL-STD-810 as a standard provides methods for testing material for use in various environments but provides no absolute environmental limits.
Therefore, some OEMs will skip the whole second part of MIL STD 810G (the actual testing part) yet still claim their devices are engineered to meet MIL-STD 810G standards.
Whilst such devices may well be more than capable of surviving the rigours of your field engineers toughest day, the simple fact is that they haven’t been actually tested to do so.
That said most of the dedicated rugged players within the space such as Janam, Getac, Panasonic and Xplore et al will all have their own internal testing facilities and will also often engage with a third party to validate their findings.
IP Ratings
IP environmental ratings along with MIL standards (MIL-STD) are perhaps the most widely recognised yet also perhaps the least fully understood of the standard definitions of what makes a mobile computer or tablet rugged.
What the IP figures mean
IP ratings are defined by International Electrotechnical Commission (IEC) standards and tell you how well devices are sealed against dirt and moisture ingress and the level of protection components have against whatever is thrown at them.
IP ratings have two numbers: the first indicates the degree of protection against dust, dirt and foreign bodies entering the device while the second is about how resistant the device is to the ingress of fluid from drops, sprays and submersion. Ingress protection ratings can be affected by the number of ports on a device and whether they are sealed or open, by keyboard design and a number of other factors.
"If like me, you’ve ever spilt tea or coffee on a computer keyboard, you’ll know that water ingress can be the kiss of death to electronic components.."
For field service, the numbers to look out for on a rugged mobile device are “5” and “6” for dust protection and 4,5,6, or 7 for water or fluid ingress. (In comparison, consumer devices typically have a rating of IP42 or lower although high-end consumer mobile devices are frequently now seen to have IP67 ratings)
Both are important when assessing devices: if like me, you’ve ever spilt tea or coffee on a computer keyboard, you’ll know that water ingress can be the kiss of death to electronic components. Less dramatic but in the long term just as damaging are ingress of dust and dirt particles. They can cause keys to stick and generally penetrate causing damage to components.
While “6” is dust-proof, a “5” rating doesn’t mean the device will prove unreliable, just that it isn’t completely sealed against dust ingress. It’s worth noting, too, that complete sealing against water and dust ingress may increase internal temperatures which in turn might impact on processor performance.
There are more numbers for fluid or water ingress: a “4” rating signals protection from splashes, “5” against water from a nozzle, “6” will cope with more powerful water jets or sprays, while “7” means you can submerge the device in water and it will still survive.
Again, which is best for your operations depends on the working environment – for many field-service environments, a “5” rating and even possibly a ”4 “will be perfectly adequate.
Touchscreens:
In a world of smartphones and tablets touch-screens have become a universally understood means of interacting with a device.
Whether it is inputting data or simply navigating through an operating system, I would put a hefty wager on the fact that anyone reading this article is both familiar and comfortable with using a touch-screen device, such is the prevalence of the technology today.
Touch-screens are an important, even critical part of the user experience of almost all modern tablets and smartphones. Yet at the same time, the screen is of course the potential Achilles heel and an obvious weak spot in a rugged device. The balance therefore between delivering a screen that is sufficiently capable of withstanding drops and knocks, whilst maintaining high usability, is absolutely critical for a rugged device.
So let's look at some of the various options you may find in differing rugged devices when it comes to the screen and explore exactly what these options actually mean.
Almost certainly the biggest debate when it comes to screen choices in rugged devices is whether capacitive or resistive screens are better suited for the task. But what is the difference between the two?
The older of the two technologies is resistive which relies on pressure to register input. This pressure can be applied by your finger, a stylus or any other object – think of the handheld computers that many delivery companies use, often covered in ink because when the original stylus is lost, the delivery driver often just uses a regular pen to collect a signature instead.
Resistive touch screens consist of two flexible layers with an air gap in between and in order for the touch-screen to register input, you must press on the top layer using a small amount of pressure to make contact with the bottom layer. The touch-screen will then register the precise location of the touch.
Rather than relying on pressure, capacitive touch-screens instead sense conductivity to register input—usually from the skin on your fingertip but also from dedicated styluses.
"The biggest debate when it comes to screen choices in rugged devices is whether capacitive or resistive screens are better suited for the task. But what is the difference between the two?"
Because you don’t need to apply pressure, capacitive touch-screens are more responsive than resistive touch-screens. However, because they work by sensing conductivity, capacitive touch-screens can only be used with objects that have conductive properties, which includes your fingertip (which is ideal), and special styluses designed with a conductive tip.
Initially one of the big advantages of capacitive touch screens was that they enabled multi-finger gestures – perhaps the most obvious example is pinching or stretching a document to zoom in or out. However, resistive touch screens have also supported multi-finger input for about three or four years now also.
The big advantage resistive screens have over their capacitive counterparts is the fact that the operator can still use the devices whilst wearing gloves – as the input is dependent on pressure rather than the electrical current being completed through a conductive material such as a finger.
An additional benefit is that light touch, such as rain landing on the screen, won’t register so the devices are far better to suited to being used in the wet.
Both of these factors are of course particularly useful in a number of field service environments.
However, another key factor for rugged devices is of course reliability and durability and in this respect, capacitive touch screens have the advantage – especially in heavy use applications.
Resistive screens can have a tendency to eventually begin to wear down in frequently used areas. Such areas may be prone to becoming faded and may ultimately even become unresponsive. Also in terms of reliability, if a capacitive touch-screen does happen to become pierced or cracked it is still likely to function – think how many times you have seen someone using a smartphone with a cracked screen?
However, a break anywhere on a resistive touch-screen will often mean that it no longer works.
In terms of field service, this is a potentially huge advantage for capacitive screens as it allows for a field service technician to continue to utilise their device until they can get the screen repaired.
Ultimately, there are many different rugged devices available these days ranging from rugged smart-phone style handhelds through to fully rugged detachable laptops. As we mentioned at the beginning of this feature ensuring the devices you select are fit for purpose is crucial.
In order to do this, we advise getting a real understanding of how your field service engineers and technicians are doing their job - what environments to they work in and what is there workflow. Get them in to give you some input or get out there on some ride-alongs. Because, if you have an understanding of this you will find a device that fits your needs.
Be social and share...
Leave a Reply