Gary Brooks, CMO, Syncron outlines some of the key technologies set to have a significant impact on field service in the not so distant future...
ARCHIVE FOR THE ‘forrester’ CATEGORY
Mar 28, 2017 • Features • 3D printing • Forrester • Future of FIeld Service • Juniper Research • KPIT • wearables • driverless cars • drones • gartner • Gary Brooks • IoT • Syncron
Gary Brooks, CMO, Syncron outlines some of the key technologies set to have a significant impact on field service in the not so distant future...
Regardless of industry, emerging technologies like autonomous vehicles, wearable devices, the Internet of Things (IoT), 3D printing and drones, will have a significant impact on how after-sales service, the service delivered after the initial sale of a product, is performed. For manufacturers of long lasting durable goods specifically, these new and evolving technologies will enable them to respond to the increasing demands of today’s consumers.
After-sales service is now one of the biggest opportunities for manufacturers to generate revenue, increase margins and improve customer loyalty. For field service repairs, emerging technology used correctly could become a huge source of competitive differentiation and improved service levels.
Below, I outline five emerging technologies and how manufacturers can use them to positively impact their field service organisations.
Driverless cars:
According to Juniper Research, by 2025 there will be 20 million driverless cars on roads around the world, with them becoming most popular in North America and Western Europe by 2021. For manufacturers, this emerging technology could be especially beneficial to field service. Driverless vehicles mean technicians can multitask – something that they can’t (or at least shouldn’t) do behind the wheel today.
The possibilities are endless – if a vehicle is not stocked with a needed service part, it could self-drive to a warehouse to retrieve it while the technician is working
Wearables:
Gartner anticipates smartglasses, like Google Glass, could impact the field service industry by $1 billion in 2017. The biggest impact wearables could make is in efficiency – if technicians can diagnose and fix problems more quickly without bringing in additional experts, both the cost savings and improved customer experiences could be monumental.
The augmented reality associated with smartglasses provides on-the-job training to technicians, and enables them to more easily repair goods, especially those they have less experience repairing. Additionally, the hands-free nature of smartglasses allows technicians to complete tasks without having to start and stop to read or view instructions. Video collaboration with remote experts could also add to efficiency.
While adoption of wearable technology has been slow due to the dependence on apps and services targeted to field service, companies like KPIT have already deployed smart glass technologies for field service specifically. As barriers to entry become lower, brands will be forced to adopt ‘smart’ devices to meet demanding customer expectations.
Internet of Things (IoT)
Forrester foresees IoT as a means to create more valuable customer interactions and improve the customer experience. And, this holds true for field service, which oftentimes serves as the ‘face’ of manufacturing brands.
The intertwined network of physical goods with sensors and software allows manufacturers to freely exchange data between the products they sell and their internal systems in place. This helps both the manufacturer and end-customer – products built with ‘smart parts’ can send a signal to both the manufacturer and customer to alert them a repair is needed and to schedule a service appointment soon. With the appropriate service parts management technology in place, the manufacturer proactively ensures the needed part is available and sends a technician to repair the product quickly, alleviating any downtime, and delivering the amazing experience customers expect.
3D Printing
3D printing has long been used in manufacturing to create part prototypes. Now, with the advances made to the technology, they can print parts in metal, which means 3D printing can be used to create actual replacement parts.
The impact 3D printing could have on parts inventory levels, warehouse needs and the logistics of moving parts from one location to another could be monumental.
Drones
Drones are becoming increasingly common for personal use. You’ll oftentimes see them at high school sporting events, outdoor concerts or being used for personal photography. For field service specifically, there are both immediate and long-term benefits of drone technology.
More immediately, drones can be used as a means of diagnosing issues on large-scale equipment like oil rigs. This means less risk for the field service technician, as drones can help them survey large or hard-to-reach areas without putting themselves in dangerous situations. Or, they can be used in warehouses to retrieve parts, making the process much more efficient.
In the future, drones could even be used to deliver a part in the field. If a technician is on-site making a repair but doesn’t have the necessary part, a drone could bring it to him or her, eliminating the need to make an additional service call.
These emerging technologies are beginning to impact businesses today, and manufacturers must consider adopting them to meet the needs of today’s customers, while simultaneously driving revenue. Soon, everyone will be able to say they’ve received exceptional customer service, as long as manufacturers embrace these new tools.
Be social and share this feature
Dec 07, 2015 • Features • context aware • Forrester • future of field service • wearables • field service • IFS • Technology
The Aerospace and Defence sector has a deserved reputation for being early adopters of new technology solutions for servicing and maintenance. True to form, ground breaking developments in Wearables and Context Aware technology are expected to...
The Aerospace and Defence sector has a deserved reputation for being early adopters of new technology solutions for servicing and maintenance. True to form, ground breaking developments in Wearables and Context Aware technology are expected to streamline maintenance operations in the sector and empower the supply chain. In Part One of this two-part feature, Brendan Viggers, product and sales support at IFS Aerospace & Defence Centre of Excellence, explains the potential.
Aerospace and Defence support, whether that is maintenance, engineering, supply or transportation, is complicated by the challenges of distance from the home base, environmental and operating pressures, and even cultural constraints in deployed operating areas. Maintenance in the field is very different from at the depot or base.
Maintenance activity requires, as a basic minimum, the right information and technical support with the right functionality to support operations, so it is a no-brainer that this needs to be tailored for the environment where the maintenance is taking place. For many years vendors have deployed solutions forwards that are manifestly complex, full enterprise solutions on mobile devices.
But in-field maintenance bears little or no similarity to that back at base, the environment is unique and often extreme. Time pressure is often increased for field engineers who have to meet tight turn-round schedules, and have the right technical documentation and direction to hand, dependent on the task and time. In unique, and often restrictive, maintenance environments full enterprise solution functionality can become a hindrance to field engineers - tailored functionality for the specific environment is critical to meeting operational deadlines.
The need for tailored information and functionality
Speedy resolution of unusual problems can be massively enhanced if equipment and those in support can understand the multiple contexts the field engineer is encountering. These include 'user' context such as the user’s profile, location, people nearby, even the current social situation; 'physical' context such as lighting, noise levels, traffic conditions and temperature; and 'time' context such as time of a day, week, month, and season of the year at the deployed location; and finally an 'operational' context to monitor elements such as spare part availability and the maintenance task at hand.
The relationship between wearables and context aware applications is symbiotic.
Wearables can sense the user's physical environment much more completely than previously possible, and in many more situations. This makes them excellent platforms for applications where the computer is working even when you aren't giving explicit commands. Future developments will introduce increased use of solutions that will automatically tailor their presentation and operation through recognition of the maintenance environment it is in.
Context Aware and Wearables in action - Civil Aviation
In the base environment, there are opportunities for application of the technology across production, quality assurance, safety, warehousing and logistics - for example, wearables can increase worker agility. Supporting the location of faulty wires or equipment on a grounded aircraft, and notifying workers about hazards such as the presence of other activities being conducted on the aircraft, are areas that could be addressed right now. Boeing is currently experimenting with augmented reality for aircraft maintenance, a hands-free device instructs workers where to find a product in the inventory.
This could be extended to giving mechanics virtual 'sight' of components hidden behind other systems or structures relative to their personal location - allowing them to remove, fit or adjust a component that they cannot physically see.
The instant effect on maintenance repair and overhaul (MRO)
Wearables with augmented reality have the potential to automatically identify the spare part required by a field engineer. Information on the appearance, known context and maintenance task required can then be fed through to the engineer's wearable device negating the need to barcode scan or consult technology documents in difficult maintenance environments - such as a dark submarine bilge or the underbelly of an aircraft - where movement is limited. It also removes the requirement for the intimate support of a base supply chain and logistician. This comes with the added bonus of not having to trek kilometres across an airfield to access catalogues in a maintenance hangar or planning office.
With context aware and wearable technology cross-matching bar codes, stock or part numbers - or even better integrating with electronic technical documents - the engineer can ensure that the right item is demanded or fitted, with the benefit of reducing time consuming document and database searches that introduce a greater opportunity for error. Increased autonomy thanks to wearables and context aware computing means the maintenance engineer spends less time 'downing tools' to consult collateral material, improving overall MRO efficiency.
Expertise on demand
Wearables can also be used for maintenance, repairs and over-the-shoulder coaching for remote engineers. Cargo and maintenance personal from a major airline have trialled the use of an optical head-mounted display (OHMD) to help inspect aircraft on the tarmac. They capture video and photos and send them to a central office where technical safety professionals assess an aircraft’s condition.
IFS is working with XM Reality to bring forward a remote expert to assist in complex maintenance to broaden the capabilities of maintenance engineers on the ground - 'augmenting' flight-line workers' skills. IFS believes adding cognitive applications and voice-controlled intelligent agents similar to Siri to wearable devices would further augment such workers' skills, helping them identify and act on specific problems with more autonomy.
Look out for Part Two of this feature which takes a closer look at the role Context-Aware mobile apps will have in achieving wider deployment of wearables.
Leave a Reply